Before Bioretention

LID Site Design and Drainage

Dan Cloak Environmental Consulting May 23, 2011

Topics

- Hydrology for Stormwater Treatment and Flow Control
- LID Site Design
 - ♦ Self-treating and Self-retaining Areas
 - Use for Pervious Areas of Site
 - Use for Dispersion to Landscape
- Pervious Pavements
 - Criteria
 - **♦** Economics
- About Green Roofs
- ♦ Harvesting and (Re)use

Hydrology

- - ♦ Reduce long-term pollutant loading
- Low Impact Development Objective

 - ♦ Achieve similar runoff volumes and time of concentration
- Design based on continuous record of rainfall and runoff
 - Consider all sizes of runoff events
 - Account for antecedent conditions

Detention Basin Sizing

Rainfall Record		
Hour #	Gage	
1	0.00	
2	0.02	
3	0.01	

Vary V until 80% is detained and 20% overflows

48-hour drawdown

Largest storm retained $\approx 85^{th}$ percentile, 24 hour ≈ 0.5 " - 1.0" storm depth

Flow Duration Control

Hour #	Flow (cfs)	
1	0.0	
2	0.0	
3	0.1	
4	0.1	
5	0.0	
6	0.2	
7	1.5	
8	0.6	
Etc.		

250,000 hours

Hour #	Flow (cfs)	Hours exceeded
115241	10.3	0
4598	10.3	1
3672	10.2	2 🚤
115242	10.0	3
243581	10.0	4
66058	9.9	5
75291	9.8	6
186540	9.7	7
Etc.		

This flow exceeded during 2 hours/250,000 hours (0.0008%)

This flow exceeded during 7 hours/250,000 hours (0.0028%)

Flow Duration Analysis

LID Site Design

Principles

- Define development envelope
- Preserve natural features and pervious areas
- Minimize roofs and paving
- Disperse runoff to landscape

Problems

- ♦ Requires space
- Densely developed hillside sites often require mass grading
- ♦ How to quantify and credit for stormwater compliance?

- **♦** Rationale
 - ♦ Some portion (40%-80%) of rainfall is infiltrated or evapotranspirated
 - ♦ Landscaped areas are at least as effective for infiltration and evapotranspiration
 - ♦ Pollutants in rainfall and windblown dust become entrained in vegetation and soils
 - ♦ No additional treatment is necessary
- Criteria
 - ♦ Not more than 5% impervious
 - ♦ Runoff does not enter an IMP or another drainage management area
 - ♦ Vegetated, stable

Page

Self-Retaining Areas

Page 45

Rationale

- Produce no runoff from "small" storms
- Also called "zero discharge" areas

Criteria

- Bermed or graded concave
- Slopes do not exceed 4%
- Amended soils and vegetation to maintain soil stability and permeability
- ◆ Drain inlets at least 3" above surrounding grade

Draining to Self-Retaining

Rationale

 Self-retaining areas are capable of ponding and infiltrating some additional runoff

Criteria

- ♠ Ratio is not greater than 2:1 if treatment-only requirements apply
- ♠ Ratio is not greater than 1:1 if flow-control requirements apply
- Provide sufficient ponding/storage depth
- ♦ Facilitate infiltration

Page 45

Recap

- ♦ Self-treating Areas
 - May be sloped and produce runoff
 - ♦ Runoff goes directly to gutter or storm drain, not to IMPs
- Self-retaining Areas
 - Must be bermed or depressed so no runoff is produced
- Areas Draining to Self-retaining Areas
 - Observe maximum ratios
 - Ensure sufficient storage and drainage
- Bioretention
 - Engineered facilities built to criteria
 - ♦ Sizing factors down to 0.04 (25:1)
 - ♦ Treatment facilities subject to reporting and verification requirements

Pervious Pavements

- Variations
 - Pervious concrete
 - ♦ Porous asphalt
 - Porous pavers
 - Gravel
 - Open pavers
 - Solid unit pavers set on sand/gravel
 - Artificial turf
- Common Characteristics
 - Require a base course
 - ♦ Base course depth varies with soil type
 - ♦ More costly than conventional concrete or asphalt
 - Installation on slopes requires careful design

Pervious Pavements FAQ

- What runoff factor should be used?
 - ♦ Zero. No runoff is produced in small to medium storms
- ♦ Can pervious pavement be used to avoid a threshold for treatment or for flow control?
 - Yes.
- How deep a base course is required?
 - ♦ Follow supplier's recommendations. Designing for structural strength typically provides sufficient storage.
- Can the base course be underdrained?
 - Consider omitting the underdrain and relying on infiltration and lateral flow
 - Outlet elevation minimum 3" above bottom of base course
 - ♦ Underdrain may be routed to storm drain

Pervious Pavements FAQ

- What maintenance is required for permeability?
 - ♦ Follow supplier's recommendations.
- ◆ Can pervious pavement be used to avoid a threshold for treatment or for flow control?
 - Yes.
- How deep a base course is required?
 - Follow supplier's recommendations. Designing for structural strength typically provides sufficient storage.
- Can the base course be underdrained?
 - Consider omitting the underdrain and relying on infiltration and lateral flow
 - Outlet elevation minimum 3" above bottom of base course
 - Underdrain may be routed to storm drain

Installation on slopes

Pervious Pavements

- May classify as self-treating
 - ♦ Sloped to street or storm drain
- May classify as self-retaining
- May receive runoff from impervious areas
 - "Areas Draining to Self-Retaining Areas"

 - Maximum ratio is 1:1for treatment+ flow control

Details

- Avoid sources of sediment draining on to pavement
- Minimal compaction of subgrade
- Rigid edge needed to retain granular pavements and unit pavers
- ♦ For solid pavers, note required ¾" gap and spec for fill between joints
- Incorporate vendor recommendations
- Use industry certified professionals
- ♦ See *Guidebook* for resources

Green Roofs

- Counted as producing no runoff
- May classify as self-treating
- May classify as self-retaining
- Planting media deep enough to store the treatment design volume
 - ♦ Account for impervious areas running on to green roof
- Design media and select plants for healthy vegetation
- Provide irrigation as necessary
- ♦ Access required for maintenance
- Recommend to use industry-certified professionals for design and construction

