

Contra Costa's experience with Low Impact Development for

Stormwater Treatment and Flow Control

Dan Cloak, P.E. California Water Environment Association P3S Conference February 28, 2007

Outline

- Key insights into HMP requirements
- LID Design Procedures
- LID Design Details
- Example Site Designs
- Continuous Improvement of Contra Costa's Approach
- Applicability to other regions

What the permit requires

... post-project runoff discharge rates and durations shall not exceed estimated pre-project discharge rates and durations where the increased discharge rates and durations will result in increased potential for erosion or other significant adverse impacts to beneficial uses...

Insights from watershed analysis

- Most streams are incised and/or are already experiencing accelerated erosion.
- Geomorphic assessment has a variety of methods, and conclusions differ.
- Local government lacks the resources to conduct a comprehensive analysis of all stream reaches in the County.
- Extrapolating hydrologic characteristics from watershed to site (or from site to watershed) requires guesswork.

Contra Costa HMP Strategy

- Accept a presumptive standard that developments must match pre-project flows
- Assist developers with the technical means to comply with that standard
- Promote Low Impact Development (LID)
- Provide developers with options

Options for HMP Compliance

- 1. Show project does not increase total amount of impervious area
- 2. Use Low Impact Development Integrated Management Practices
- 3. Use a continuous-simulation model to show runoff will not exceed preproject flow peaks and durations
- 4. Show projected increases in runoff peaks and durations will not accelerate erosion of receiving stream

LID Site Design

- Divide the site into Drainage Management Areas
- Use landscape to disperse and retain runoff where possible
- Route drainage from remaining areas to IMPs
- Design the IMPs to accommodate available space and hydraulic head

Drainage Management Areas

- Four Types of Areas
 - Self-treating areas
 - Self-retaining areas
 - Areas draining to a self-retaining area
 - Areas draining to an IMP
- Only one surface type within each area
- Many-to-one relationship between drainage areas and IMPs

Self-treating areas

- Must be 100% pervious
- Must drain offsite
- Must not drain on to impervious areas
- Must not receive drainage from impervious areas
- Must not drain to IMPs
- No treatment or flow control required
- No further calculations required

Self-retaining areas

Self-retaining areas

- Berm or depress grade to retain 1" rain
- Set area drain inlets above grade
- ■Amend soils
- Terrace mild slopes
- Have limited applicability in
 - Dense developments
 - Hillsides

Areas draining to self-retaining areas

- Impervious areas can drain on to self-retaining areas
- Example: Roof leaders directed to lawn or landscape
- Maximum ratio is 1:1 impervious:pervious if flow control requirements apply to project
- Maximum ratio is 2:1 if treatment only requirements apply to project
- No maintenance verification required

Areas draining to self-retaining areas

 $\frac{\text{Impervious}}{\text{Pervious}} \le 1$

Areas draining to IMPs

- Areas used to calculate the required size of the IMP
- Where possible, drain only impervious roofs and pavement to IMPs
- Delineate any pervious areas separately
- Use the sizing tool

Integrated Management Practices

Advantages

- Detain <u>and</u> treat runoff
- Typically fit into setbacks and landscaped areas
- Accommodate diverse plant palettes
- Low-maintenance
- Don't breed mosquitoes
- Can be attractive

Challenges

- Soil surface must be 6-12" lower than surrounding pavement
- Require 3-4 feet of vertical "head"
- Can affect decisions about placement of buildings, roadways, and parking

Implementing LID IMPs

- IMPs can be effective, attractive, and accepted by developers
- Incorporate IMPs in preliminary site, landscaping and drainage design drawings

Bioretention Area

Dry Well

Infiltration Trench

Infiltration Basin

Size, depth and head

Size

Determined by sizing factors

• Required dimensions should be shown on C.3 plan or grading and drainage

plan

Depth

- Reservoir
- Soil Layer
- Drainage Layer

LID and Hydraulic Head

- Saves space
- Concentrates flows
- "Drop" at inlet

- Keeps flows dispersed
- Requires space
- "Drop" through soil filter

LID and Head

Fill Materials

- Soil layer
 - Infiltration rate ≥ 5"/hour
 - Clay < 5%
 - Current spec:
 - 50-60% construction sand
 - 20-30% compost
 - 20-30% topsoil
 - Looking for a "branded" mix
- No filter fabric between layers
- Gravel drainage layer
 - "Class 2 Perm"
 - Caltrans Manual 68-1.025

Example Site Designs

9-acre, mixed use ROOFING (TYPICAL) SECTION D - D Clay soils Flat grades Max. use SEE HOLLMAN-BOLOGNA DOCUMENTS FOR ROOF PLAN NEORMATION, THIS AREA AREA C-5 11,000 SF Storm drains AREAC-4 Setbacks + BUILDING Multi-family 17,150 SF 5,925 SF Residential * BUILDING 51 Retail AREA N-Z Restaurant RESIDENTIAL AREA C-3 AREA C-1 44,000 SF Retail 98,450 SF nursery AREA GIO AREA C-11 2 25,825 SF AREA C-3 22,1855F 280

Area "C-2"

15 areas; 15 swales MECHANICAL HELLS TO ROOFING (TYPICAL) - SEE DETAIL BELOW SECTION D - D 10,675 SEE HOLLMAN-BOLOGNA DOCUMENTS FOR ROOF PLAN NEORMATION, THIS AREA AREA C-5 11,000 SF AREAC-4 RETAMING TRASH. 07 ↑ BUILDINK↑ 17,150 SF 5,925 SF * BUILDING 51 AREA N-Z AREA C-9 RESIDENTIAL AREA C-8 AREA C-1) 44,000 SE 13,1245F BULLDINGZ ARKA 50 SF 98,450 SF AREAN-3 8,148 SF REFUSE AREA DRAINWITH GREASE, INTERCENTAL TO SANITAN AREA GIO TRASH AREA AREA C-11 2 25,8255F TO BE COMMIS 28,450 SF AREA C-3 22,1855F 280

Lessons

- Possible to incorporate stormwater treatment BMPs without sacrificing usable area
- ■Use roof plan *and* grading plan to draw drainage areas
- Overland drainage to BMPs can be a challenging design problem on flat sites

27 lots on a hillside

- Hillside
- Clay soils
- Steep driveways
- Undulating terrain

- New streets
- Pocket parks
- Pipeline easement
- Tentative Map

27 lots on a hillside

- Ditch upslope runoff around development
- Collect and pipe runoff from upper lots to bioretention area
- Cross-slope streets toward development
- How to provide for maintenance in perpetuity?

Grading and Terracing

- 16% driveway slope
- Building pads separated by1:1 or 2:1 slopes
- Can't make these pervious areas "self-retaining"
- Slopes are a potential source of sediments
- Best solution: Terrace slopes with low retaining walls

Continuous Improvement

- More and better IMP designs
 - Smaller sizing factors
 - Safe and constructable
 - Fill materials and outflow details
 - Good-looking and salable
 - Engaging the development community
- Consistent application of requirements throughout Contra Costa County
- Validating modeled IMP outflows

Adapting to other regions

- Most aspects are the same:
 - Regulations are similar
 - Can use same suite of IMPs
 - Modeled stage-storage-discharge relationships are the same
 - Stormwater C.3 Guidebook format and "Stormwater Control Plan" submittal concept has already been reused in Sonoma and Alameda counties
- Would need to customize by:
 - Using local rainfall record to calculate regional sizing factors and adjustments