

Hydrograph Modification: An Introduction and Overview

Christie Beeman and Jeff Haltiner
Philip Williams & Associates
c.beeman@pwa-ltd.com; j.haltiner@pwa-ltd.com

Stormwater Regulation

- Flood Management
 - Large, infrequent events (quantity)

- Stormwater Quality
 - -Small, frequent events (quality)

- Hydrograph Modification Management
 - -Small, frequent events (quantity --> quality)

Altered hydrology can cause channel erosion.

- Higher, more erosive peak flows
- Longer duration of lower, but still erosive, flows

Why regulate Hydro Mod?

- Channel morphology is a response to the watershed delivery of water and sediment
- In a stable creek channel, water and sediment are in balance:
 - no net erosion or deposition over time
- Changes in watershed hydrology & sediment supply can upset the balance
- Watershed impacts of development tend to cause channel erosion/degradation

Channel erosion can cause:

- Reduced water quality (sediment load, turbidity) = regulatory "hook"
- Damage to adjacent property & infrastructure
- Loss of riparian habitat
- Loss of aquatic habitat
- Downstream sediment delivery/deposition

How does it happen?

How does it happen?

40% evapotranspiration

Urbanization tends to increase stormwater runoff:

- peak flows
- volume
- frequency

Hydrograph Modification Management

Bay Area standard:

Post-project runoff peaks and durations must not exceed preproject levels if an increase could cause erosion or other significant effects on beneficial uses.

- Quantifying potential hydrograph modification impact (and mitigation) is a challenge
- Analysis requires
 - Rainfall-runoff modeling
 - Comparison of pre- and post-project conditions

- Single event "design storm" models (e.g. Q100):
 - Common tools for flood analysis, but
 - Not effective for analyzing smaller, more frequent events

 Event-based models predict runoff response for a particular storm event

 Don't reflect cumulative runoff response over time

- Continuous hydrologic models:
 - Can evaluate flow peak and duration over full range of flows, but
 - Require specialized expertise, onerous for smaller projects

PWA

- Continuous simulation models use a long-term rainfall record (30+years)
- Statistical analysis of runoff response to all events

What's the result?

Altered hydrology can cause channel erosion.

- Higher, more erosive peak flows
- Longer duration of lower, but still erosive, flows

Urbanization also tends to reduce the natural sediment supply:

- land development
- detention basins

Channel Response

Response of the stream is complex, depends on channel and watershed characteristics ...

Channel Response

... but we have simple models to predict potential impacts from development.

Channel Response

After Schumm, and Simon & Hupp

New dynamic equilibrium channel

Channel creates terraces and new floodplain. New channel meanders within the new floodplain, recreating a living river.

Restoration often seeks to accelerate this natural process to achieve new dynamic equilibrium.

Stage 🕡

"Natural" Channel

Channel is well connected to floodplain, with low banks and diverse habitat.

Stage 🕗

Constructed Channel

Straightening, vegetation removal and levee construction channelize the stream, increasing its gradient and increasing flow velocity.

Stage 🕙

Incising Channel

Channel downcuts in response to channelization dissipating excess energy through bed erosion.

Stage 🕢

Widening & Incising Channel

As incision increases bank height and angle, banks collapse and channel widens.

Stage 🕣

Widening & Aggrading Channel

Wider channel is unable to transport all collapsed bank material. Excess material forms terraces below former floodplain.

Stage (1)

New dynamic equilibrium channel

Channel creates terraces and new floodplain. New channel meanders within the new floodplain, recreating a living

Stable Channel

Channel Incision

Channel Incision

Bank Erosion / Collapse

Bank Erosion / Collapse

Channel Widening

Channel Widening

New dynamic equilibrium

Example: Rifle Range Creek, Oakland

Example: Rifle Range Creek, Oakland

higher creek flows

+ lower sediment supply

erosion

Summary

- In a stable creek channel, water and sediment are in balance:
 - no net erosion or deposition over time

 Watershed impacts of development tend to cause channel degradation

 Specific channel response depends on complex interaction of watershed and channel characteristics

Conclusion

 The goal of hydrograph modification regulation is to manage water quantity to preserve water quality and stream function

 Challenge is to develop a regulatory scheme that is simple enough to apply but sophisticated enough to be effective

Questions?

