Low Impact Development

Planning, Design, and Construction for Compliance with MRP Provision C.3

Dan Cloak, Principal
Dan Cloak Environmental Consulting
June 12, 2014

Motivations

Compliance

- Mandate
- Client support
- Acceptance of costs
- Structure
- Schedule
- Accountability

Project Quality

- Enthusiasm
- Interest
- Energy
- Synergies
- Opportunities
- Elegance

Objectives for Today

- Bring you up to date on the ongoing evolution of C.3 requirements
- Provide a refresher on LID design for C.3 compliance
- Discuss common problems and issues with project design and identify workable solutions
- Share feedback

Time	Topic
12:45	Check In
1:00	Introductions
1:10	LID Principles and Objectives
1:25	C.3 Background and Update
1:45	LID Site Design and Bioretention Design—Conceptual Level
2:30	BREAK
2:40	Issues Frequently Discussed
3:30	BREAK
3:40	Bioretention Design Details
4:15	Construction of Bioretention Facilities
4:25	Operation and Maintenance of Bioretention Facilities
4:35	Topics for Future Workshops and Wrap Up
4:45	Adjourn

Conventional Urban Drainage

- Impervious surfaces: roofs and pavement
- Catch basins and piped drainage
- "Collect and convey" design objective

Reduce pollutants in runoff

Protect against spills and dumping

Detain and filter runoff

Disconnect drainage and filter runoff

Watershed and Stream Scale	Site scale
Reduce peak flows	Detain runoff on site
Increase time of concentration	Slow runoff from leaving site
No runoff from small storms	Infiltrate, evapotranspirate and reuse
Reduce duration of moderate flows	Let runoff seep away very slowly
Reduce runoff volume	Infiltrate and reuse where possible
Reduce runoff energy	Detain and slow flows
Increase groundwater storage and stream base flows	Facilitate infiltration

Green Infrastructure

City of San Mateo

Urban Land Use Categories

Potential High Opportunity

Old Commercial/Retail

Old Residential/Schools/Colleges

Freeway

Open Space, Parks

Trash Management Areas
(1 Highest Priority,
5 Lowest Priority)

Planned Priority Development Area

C.3 Regulatory History

- 1987 Congress adds Section 402(p) to Clean Water Act
- 1990 USEPA regulations require states to issue stormwater NPDES permits to large municipalities
- **1990** Regional Water Board issues first Bay Area stormwater NPDES permits
- 2000 State Water Resources Control Board "Bellflower decision" confirms municipalities must require new developments to treat runoff

C.3 Regulatory History

- 2003 Regional Water Board adds Provision C.3 to stormwater permit for Contra Costa municipalities
- 2005 C.3 implementation begins for projects creating or replacing an acre or more of impervious area
- 2006 Water Board adopts Contra Costa's
 Hydrograph Modification Management Plan
 and requirements take effect. C.3 threshold for
 treatment requirements drops from one acre to
 10,000 square feet of impervious area

C.3 Regulatory History

- 2009 Municipal Regional Permit adopted, including LID requirements. Threshold for some land uses lowered to 5,000 SF of impervious area. Contra Costa develops current HMP sizing factors and calculator.
- 2011 MRP amended, including "Special Projects" categories. LID requirements take effect, including feasibility tests for infiltration and harvesting/reuse.
- 2013 Municipal permittees assessed implementation of feasibility tests and recommended allowing bioretention as a first choice for LID treatment.

Where Are We Now?

- LID treatment is required
 - Runoff may be reduced or dispersed as detailed in the Stormwater C.3 Guidebook
 - Bioretention is LID and may be used without a feasibility test
- Bioretention facilities must meet specific design criteria
 - 12" gravel storage layer underneath entire area, with underdrain at the top
- Vault-based filters or tree-well-type biofilters may be used only on "Special Projects,"
 - Only for a portion of impervious area (table of "credits" on p. 60)
 - Document infeasibility of 100% bioretention
- Hydromodification Management requirements apply to projects with ≥ 1 acre impervious area created/replaced

Outdated

NOT TO SCALE

Small Projects

Street

- Projects that create or replace between 2,500 and 10,000 SF of impervious surface
- Effective Dec. 1,2012
- Use template on CCCWP website

What's Coming in MRP 2.0?

- Focus on design standards for LID
 - Bioretention
 - Pervious Pavement
- Updated hydromodification criteria
 - New sizing factors for facilities
 - Updated sizing calculator
- Focus on operation and maintenance
- Simplification and streamlining(?)

LID Design Process

Analyze
Project for
LID

Develop and Document LID Drainage Design

Coordinate with Site Design and Landscape Design

Analyze Your Project for LID Page 36

- Optimize the site layout
- Use pervious surfaces
 - Disperse runoff
 - Store runoff and use it later
- Drain to bioretention or other facilities to retain, treat, and control flows

Optimize the Site Layout

- Define the development envelope
- Minimize grading
- Set back from creeks, wetlands, and riparian areas
- Preserve significant trees

- Limit roofs and paving
- Preserve and use permeable soils
- Detain and retain runoff throughout the site
- Use drainage as a design element

Use Pervious Surfaces

Page 38

Permeable pavements

■ Green roofs

Bioretention

evapotranspiration

losses

infiltration

flow control orifice

Discharge (biotreatment)

Bioretention Advantages

- Filtration and pollutant sequestration
- Biological processing and renewal
- No mosquito problems
- Mimic natural hydrology
- Attractive landscape amenity
- Potential use as park or playground
- Low maintenance
- Easy to inspect

Ci ego.)	Impervious Area	ro, et Characteristics	Criteria (1 1creus refers to total site acreage)	LID Credit	Compensage 60	
A Lot Line to Lot Line	X ≤ ½ Ac	Urban/Pedestrian design ¹ in Business/ Downtown Districts ²	No density criterion	100%	Zero surface parking ³ ≥ 85% Site Coverage ⁴	
B High Density	$\frac{1}{2}$ Ac \leq X \leq 2 Ac	Urban/Pedestrian design* in Business/ Downtown Districts	Floor Area Ratio (FAR) ≥ 2:1; OR for Residential (Res) projects, ≥ 50 Dwelling Units (DU)/Acre	50%	Zero surface parking ³	
			$FAR \ge 3:1$; OR Res ≥ 75 DU/Acre	75%		
			FAR ≥ 4:1; OR Res ≥ 100 DU/Acre	100%		
С			Location Credits (count only one)			
Oriented	Oriented FAR ≥ 2	Non-auto-use project FAR ≥ 2:1 OR Res ≥ 25 DU/Ac	within 1/4 mi of transit hub5	50%	50%+ of site w/in	
			within ½ mi of transit hub	25%	distance	
			within a Priority Development Area	25%	100% of site w/in PDA	
			Density/FAR Credits			
		FAR ≥ 2:1; OR Res ≥ 30 DU/Acre	10%			
			FAR ≥ 4:1; OR Res ≥ 60 DU/Acre	20%		
			FAR ≥ 6:1; OR Res ≥ 100 DU/Acre	30%		
			Minimized Parking Credits			
			≤ 10% at-grade surface parking	10%	Surface parking uses LID	
			Zero surface parking ³	20%		

Special Projects - Criteria

- Tree-box-type biofilters
 - 50 inches per hour surface loading rate
 - Minimum 3.5 feet depth
 - Supports a healthy tree or other vegetation
- Vault-based media filters
 - Surface loading rate of 1 gpm/ft²
 - Orifice to control flow to cartridges

Special Projects - Feasibility

- Reporting requirement to assess the feasibility of using 100% LID
- Conditions for bioretention feasibility on Special Projects:
 - Level area free of structures and utilities
 - Large enough and suitable for landscaping
 - Surface drainage or other route for runoff to reach the facility
 - Connection from underdrain with sufficient head
- Feasibility of offsite treatment
 - Project proponent owns or controls suitable site, or
 - Publicly operated mitigation program

LID Design Process

Analyze
Project for
LID

Develop and Document LID Drainage Design

Coordinate with Site Design and Landscape Design

Drainage Management Areas

- Follow roof ridges and grade breaks
- Different DMA for each surface type

Page 4-2

- Pervious DMAs
 - Self-treating
 - Self-retaining
- Impervious DMAs
 - Drains to self-retaining
 - Max 2:1 ratio impervious:pervious
 - Drains to LID facility

Use a curb to avoid run-on from self-treating areas

Grade self-retaining areas to drain inward. Set any area drains to pond 3"-4"

Example **50**′ 150' GB 40' 40' 80' DMA-1 DMA-2 DMA-3 DMA-6 DMA-4 3200 DMA-1 DMA-2 3200 DMA-3 3700 DMA-4 12400 DMA-5 500 GB DMA-6 8500 DMA-7 4200 **Total** 35700 GB

DMA-7

20'

DMA-5

Sizing

DMA Name	Area	Post- project surface type	DMA Runoff factor	DMA Area × runoff factor	Facility Na	ıme	
DMA-1	3200	Roof	1.0	3200			
DMA-2	3200	Roof	1.0	3200	Facility	Minimum	Proposed
DMA-4	12400	Paved	1.0	12400	Sizing factor	Facility Size	Facility Size
Total>	45	10'	150'	18800	0.04	752	900

DMA-1	3200
DMA-2	3200
DMA-3	3700
DMA-4	12400
DMA-5	500
DMA-6	8500
DMA-7	4200
Total	35700

3 most common mistakes

1. Didn't start early enough.

2. Planned to use less effective treatment facilities.

Postpone maintain

Applicability

- The whole of an action
 - Consistent with CEQA definition
 - No piecemealing
 - Includes improvements on public ROW
- Swimming pools
- Pervious pavements
 - Must meet criteria
- Pavement reconstruction
 - Did the drainage change?

Criterion in previous permit (2003-2009):
Project results in an increase of or replacement of 50% or more of existing development

NEW

MRP criterion: Project results in **alteration of** more than 50% of the previously existing development

Development Review Process

- "Plan and design your stormwater controls integrally with the site plan and landscaping for your project."
- Drainage Management Areas
 - Grading and roof areas and slopes
- Locations/sizes of stormwater facilities
- Conceptual routing of drainage

Options for New Subdivisions 6-8

- 1. Total impervious area will not exceed threshold
- 2. Dispersal will work
- Improvement plans showing treatment and flow-control facilities
 - Commitment to construct facilities prior to sale
- Improvement plans showing treatment and flow-control facilities
 - Deed restriction or other legal instrument ensuring lotby-lot implementation

Grandfathering

Page 6

Requirements of previous permit apply if:

- Planning application deemed complete on or before 12/1/2011...
- ...so long as the applicant is diligently pursuing the project
 - Submittal of supplemental information
 - Plans or other required documents

Pervious Pavement

Page 65

Issues With Pervious Pavement

Pervious Pavement

- It's for retention, not treatment
- Only suitable where:
 - Grades are flat
 - Soils will drain
 - Traffic is light
 - Current property owner wants the aesthetic effect and/or cachet
 - Future property owners will preserve it

Optimal size for bioretention?

½ Acre

Best Planning for Parking Lots

Best Planning for Commercial

Small subdivision on flat site

- Hydromodification management is required
- Disperse/retain as much roof drainage as possible on each lot
- No inlets drain curb out to main street
- Regrade if necessary, and tolerate a very slight slope
- Bioretention top of soil layer is just below curb elevation—no side slopes

Don't create pits

Flow Control & Redevelopment

Pre-Project Impervious Area

Treatment only

Treatment + flow control

Post-Project Impervious Area

Min. 18

achieve \

Botton

Top of Gravel Layer TGMP Name: IMP1 (Soil Type: D)

IMP Type: Bioretention Facility

Min. 12" or a oil Type: D

om c	of Gravel Layer BC Moisture barrier i needed to protect pavement or stru	Name if	DMA Area (sq ft)	Project Surface Type		Area x Runoff Factor	IIVIF SIZIIIQ			
		DMA2	1,950	Conventional Roof	1.00	1,950	Sizing	Rain Adjust- M		Proposed Area or Volume
		DMA4	1,050	Conventional Roof	1.00	1,050			Minimum	
		DMA7	7,025	7,025 Concrete or Asphalt	1.00	7,025		ment	Area or Volume	
		Total 10,025				10,025	Factor	Factor	Volume	
		Area					0.050	1.009	506	506
		Surface Volume				Volume	0.042	1.009	425	425
		Subsurface Volume					0.055	1.009	556	557

Maximum Underdrain Flow (cfs)

Orifice Diameter (in)

0.02

0.87

DMA

Flow Control Alternates

Pages 87-92

Costs and Useful Life

- Have heard \$25/SF for planning purposes
- Better to estimate components individually
- Amount of concrete work varies and could be a significant cost
- Useful life of concrete components 30+ years?
- Sand/compost mix, gravel and piping should last at least that long
- Plus landscape maintenance

Pollutant Retention and Buildup

DMAs are as intended

Page 94

Make This Happen

Bioretention facilities are level so they "fill up like a bathtub."

Not this

Notes:

- No liner, no filter fabric, no landscape cloth.
- · Maintain BGL. TGL, TSL throughout facility area at elevations to be specified in plan.
- · Class 2 perm layer may extend below and underneath drop inlet.
- Elevation of perforated pipe underdrain is near top of gravel layer, except when zero infiltration is expected.
- See Appendix B for soil mix specification, planting and irrigation guidance.
- See Chapter 4 for factors and equations used to calculate V₁, V₂ and orifice diameter.

Foundations and Pavement

- infiltration is expected.See Appendix B for soil mix specification, planting and irrigation guidance.
- See Chapter 4 for factors and equations used to calculate V₁, V₂ and orifice diameter.

Geotechnically Difficult Sites

High Groundwater

No Storm Drain

- Where soil or groundwater is polluted
- On plazas or other structures

Page 94

- Outlet structure
 - Top of overflow grate
 - Underdrain connection
- Inlet
 - Flow line at inlet
 - Top of curb
 - Top of adjacent paving
- ■Soil layers
 - Top of soil layer
 - Bottom of gravel layer
 - Bottom of soil layer

Outlets

ity

Page 76

Overflow elevation

Overflow structure 24" min x 36" min. concrete drop inlet or manhole with frame and atrium or beehive grate. 4" openings

r as
p achieve V₁

ulch if
n landscape
Schedule 80
(no perforations)
seal penetration
with grout

To storm drain or approved discharge

Bioretention Edges

Page 77

il mix against drop-off. And/or use scourage entry

6" min. or as required to achieve V1

Soil mix

Gravel layer

Gravel and Underdrain

Page 71

- Class 2 permeable
 - Caltrans spec 68-2.02(F)(3)
- No filter fabric
- Underdrain
 - Discharge elevation at top of gravel layer
 - PVC SDR 35 or equivalent; holes facing down
 - Solid pipe for 2' closest to outlet structure
 - Cleanout

- 60-70% Sand
 - ASTM C33 for fine aggregate
- 30-40% Compost
 - Certified through US Composting Council Seal of Testing Assurance Program
- Install in 8"-12" lifts
- Do not compact
- Do not overfill
- Leave room for mulch

Apx. B

- Select plants for fast-draining soils
- Select for facility location
 - Avoid problem conditions
 - Overly dense plantings
 - Aggressive roots
 - Invasive weeds
 - Need for irrigation or fertilization

Plants that work

Apx. B

Plant Recommendations for Bioretention Facilities and Planter Boxes

Grasses and Grass-like Plants

Scientific name	Light Preference			Size (feet)		Watering				Tolerates			CA		
Common name	Sun	Part	Shade	Ht.	Width	L	M	Н	Summer	Heat	Coast	Flood	Wind	Native	Other Notes
Bromus carinatus California brome	1			2	1	V			ok	1		✓.	1	✓	
Bouteloua gracilis blue grama	√			1.5	1	V				1		~	1		Tolerates no s irrigated remot
Carex densa dense sedge	1			1	. 1		1	1	✓	✓		✓		✓	
Carex obnupta slough sedge	1			2	1		/	1	✓	1	1	1	V	V	
Carex praegracilis clustered field sedge	1	1		1.5	1.5		1	1	✓	1	1	✓	1	✓	
Carex subfusca rusty sedge	1	V		1	1		1		ok	1	1	1	1	✓	Great for swale
Carex divulsa Berkeley sedge		✓	✓	1	1		1		ok		1	1	1	/	AKA Carex turi coast.
Deschampsia cespitosa tufted hairgrass	√			2	1		✓		ok			√	✓	✓	Can look weed
Distichlis spicata salt grass	✓			0.3	3		1	1	√	1	1	V	√	1	Looks like berr traffic, for soils
Eleocharis palustris creeping spikerush	1			1	1		1	1	ok	1	1	✓	1	1	
Elymus glaucus blue wildrye	1			1.5	2		1	1	ok	1	1	1	1	1	good for grazir looking lawn
Festuca californica California fescue	1	✓	~	2	2	1			ok	1	1		1	1	

Landscaping—O&M issues

Page B-3

- Avoid filling in or regrading
- No fertilizer
 - Compost tea once per year if needed
- No pesticides
- Clean up as needed and annually
- Add mulch if needed annually
 - Compost mulch (aged mulch) recommended

Avoid design conflicts

Page 30

- Elevations consistent with grading and architectural plans
- Facilities do not interfere with parking or pedestrian circulation
- Utilities are located elsewhere
- Protection of adjacent paving and structures has been considered

- Layout
- Excavation
- Overflow or Surface Connection
- Underground connection (underdrain)
- Drain rock/subdrain
- Soil Mix
- Irrigation
- Planting
- Final

Construction

- Yes, inspections are needed
- Special inspections (or inspectors) may be appropriate
- Edit construction checklist and deliver to general contractor at pre-construction meeting
- Make sure landscape contractor gets the message(s)
 - Elevations
 - Additions of material
 - Fertilizers

2-Year Warranty

- Extension of standard 1-year warranty for landscaping
- Allows identification and correction of problems during rainy season

Current Approach to Verification

Table C.3.h. – Operation and Maintenance of Stormwater Treatment Systems
City of Eden Annual Report FY 2008-09

Facility/Site Inspected and Responsible Party for Maintenance	Date of Inspection	Type of Inspection (annual, follow- up, etc.)	Type of Treatment System or HM Control Inspected	Inspection Findings or Results	Enforcement Action Taken (Warning, NOV, administrative citation, etc.)	Comments		
ABC Company 123 Alphabet Road San Jose	12/06/08	annual	offsite bioretention unit	proper operation	none	Unit is operating properly and is well maintained.		
DEF site	12/17/08	annual	onsite media filter	ineffective filter media	verbal warning	Media filter is clogged and needs to be replaced.		
234 Blossom Drive Santa Clara	12/19/08	follow-up	onsite media filter	proper operation	none	New media filter in place and unit is operating properly.		
	1/19/09	follow-up	onsite media filter	proper operation	none	Unit is operating properly.		
GHI Hotel 1001 Grand Blvd 227 Touring Parkway	12/21/08	annual	onsite swales	proper operation		Bioretention unit #2 is badly eroded because		
			onsite bioretention unit #1	proper operation	notice of violation	of flow channelization. Stormwater is flowing over the eroded areas, bypassing		
			onsite bioretention unit #2	eroded areas due to flow channelization		treatment and running off into parking area		
	12/27/08	follow-up	onsite bioretention unit #2	proper operation	none	Entire bioretention unit #2 has been replanted and re-graded. Raining heavily but no overflow observed.		
Rolling Hills Estates	01/17/09	annual	onsite pond	sediment and debris accumulation	notice of violation	Pond needs sediment removal and check dam needs debris removal.		

Bioretention O&M

- Inspect inlets, outlets, and side slopes
- Soils percolate
- Check dams and flow spreaders
- Healthy vegetation
- Removal or alteration

Possible new approach to O&M

Possible new approach to O&M

- Identify and delineate facilities
 - Increase awareness
 - Prevent alteration
- Track locations and status
 - Confirm ongoing operation and effectiveness of individual facilities
 - Track rollout of LID across watersheds
- Engage property owners and users

