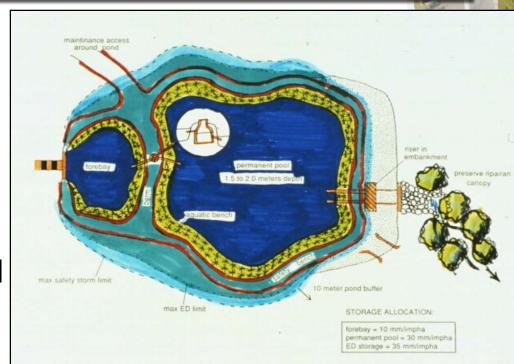
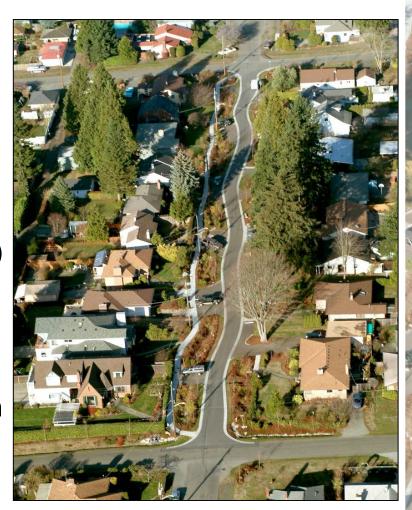


Discussion Topics

- Brief history of structural stormwater management
- The Low Impact Development (LID) alternative to ponds, ponds, ponds...
- LID for Hydromodification Management:
 - State of Washington
 - City of Portland, Oregon
 - Prince George's County, Maryland
- Contra Costa approach builds on the best ideas from these programs


Brief History

- Pre-1990's
 - Northwest:Detention pondsfor peak ratecontrol
 - California:
 Emphasis on
 conveyance to
 regional channel
 systems


Brief History (Cont'd)

- 1990's (NPDES Triggers New Thinking)
 - Northwest:
 Treatment and
 hydromodification
 added, new analytical
 tools, salmon also a
 driver
 - California: Structural controls appear for stormwater treatment

Brief History

- Late 1990's to Now (Convergence)
 - LID gains traction
 - Guidance Manuals proliferate! (Start at the Source 1999, Prince George's County 1999)
 - Numerous "pilot studies"
 - California: NPDES hydromod req'ts kick-in

So what do we mean by LID....

Low impact development is a stormwater management strategy that emphasizes conservation and use of existing natural site features integrated with distributed, small-scale stormwater controls to more closely mimic natural hydrologic patterns in residential, commercial, and industrial settings.

Source: (Puget Sound Action Team 2005)

Example of an LID Strategy

.12

Erosion and Sediment Control Handbook

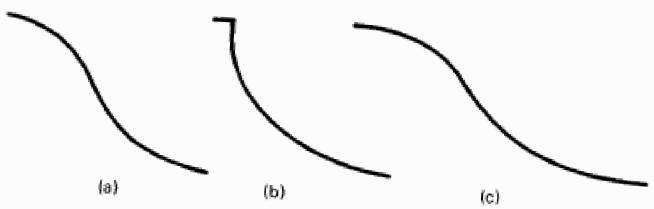
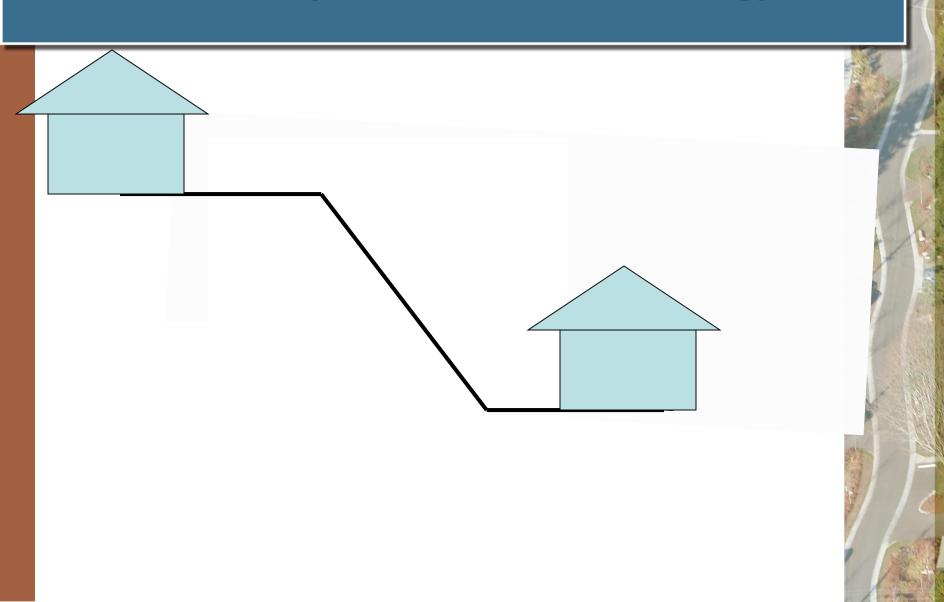
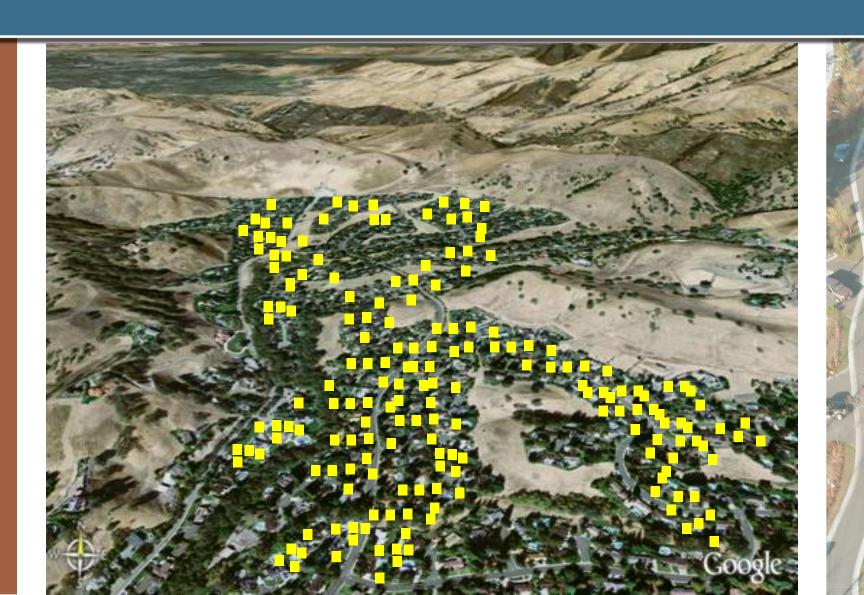




Fig. 1.6 Effect of slope shape on erosion potential. (a) Convex slope; (b) concave slope; (c) stable slope. (Adapted from 5)

Example of an LID Strategy

Example of an LID Strategy

Why is LID so hot right now?

- Minimizes changes to natural hydrology
- Controls pollutants at the source
- Soil contact optimal for pollutant removal

Treatment Facility	TSS	Dissolved Metals incl. Cu, Zn	Total Phosphorus	Pesticides/ Fungicides	Hydro- carbons incl. O&G, PAH
Wet Pond		4	+		#
Wet Vault					
Biofiltration		+	+	+	*
Sand Filter		+	+		*
Constructed Wetland			+		
Leaf Compost Filters		+			
Infiltration ⁽²⁾		+		+	+
Oil/Water Separator					
Bio-infiltration			4		

Footnotes.

- Significant Process
- + Lesser Process

Why is LID so hot right now?

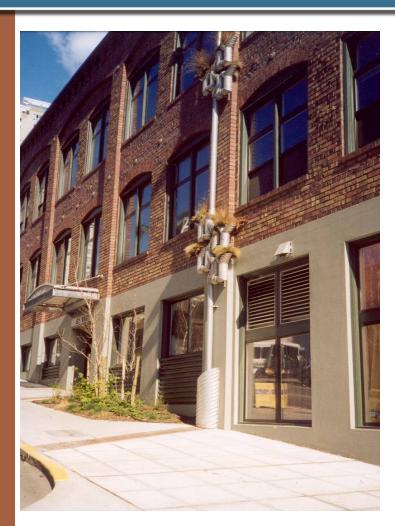
Aesthetics and public acceptance

Vectors (e.g., mosquitoes)

Reuse potential

So what does LID look like?...

- Site assessment
- Site planning and layout
- Vegetation protection and maintenance
- Clearing and grading
- Distributed and integrated management practices (IMPs)
- Maintenance and Education


Today's Emphasis....

- Site planning and layout Hydrology as the "organizing principle"
 - Road, driveway and parking layouts
 - Street trees
 - Lot Layout
 - Building design
 - Collection system with...
- Distributed and integrated management practices (IMPs)

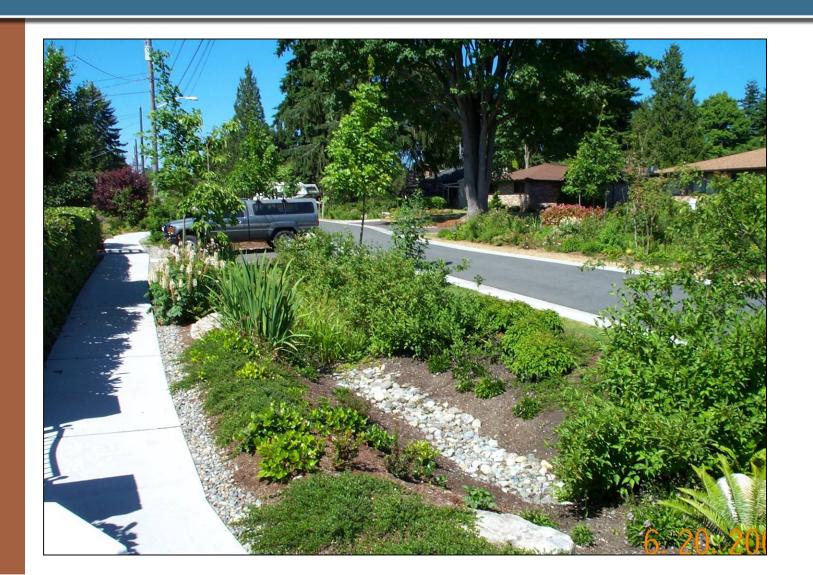
Integrated Management Practices

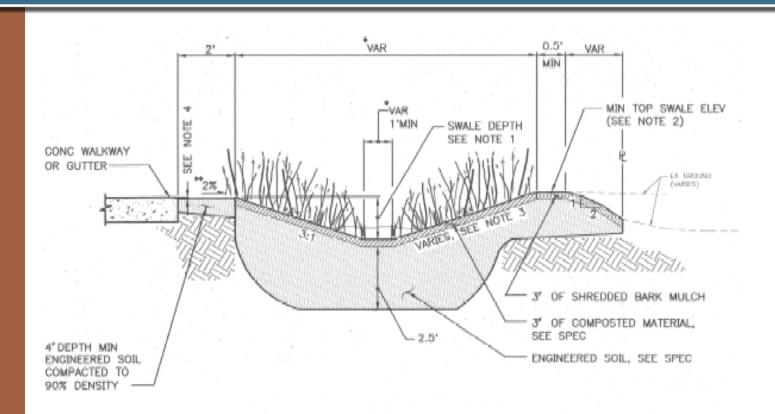
- Examples (Yes, people are really building these things...)
 - Highly urban environment (Growing Vine)
 - Road runoff (SEA Streets, Viewlands)
 - Parking lots (Auburn Library)
 - College campus (Olympic College)
- Spokane LID since 1979

Growing Vine Street

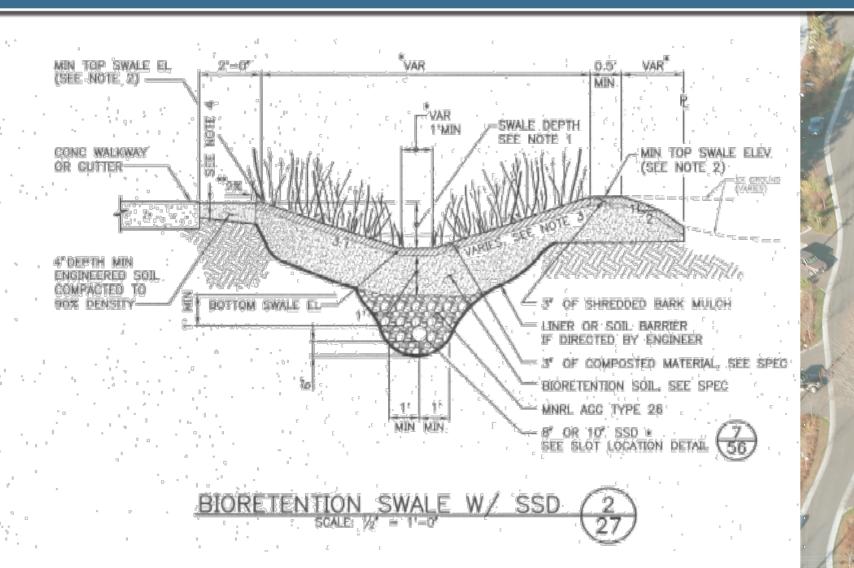
Bio downspout

Bio downspout Cistern & Cascade


SEA Street Before


SEA Street After

SEA Streets

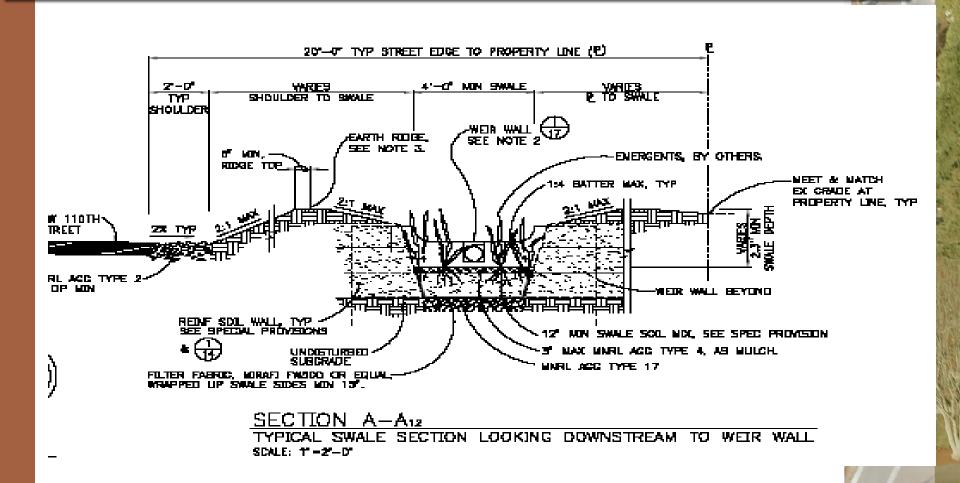


SEA-Street

ENGINEERED SOIL SWALE 3

SEA-Streets

SEA-Streets Initial Performance

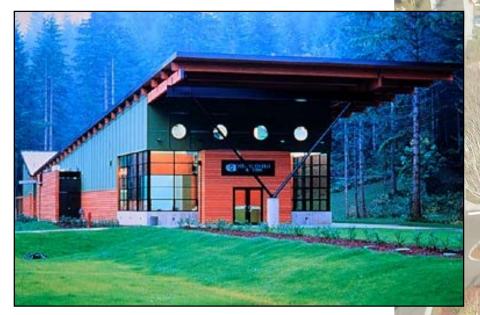

- Monitoring showed 98% reduction in runoff for small storms
- Commensurate water quality benefits
- Traffic calming
- Neighborhood enhancement

Viewlands Cascade

Viewlands Cascade

Auburn Library

"Stacked" system: Lined bioswale overflows into underlying infiltration pipe"


Olympic College

Sheet flow into swale

Lined Bioswale

Infiltration basin

Spokane Has Successfully Used Bio-Infiltration Since 1979

>8,000 Bio-infiltration facilities installed to protect Sole Source Aquifer

Lesson: Improve design standards and integrate with other codes

- Fine tune standards over time
- Address conflicts with building code

Lesson: Aesthetics increase public acceptance and success

Attractive landscape features less likely to be filled in by property owner

Lesson: Educate Contractors and Facility Owners

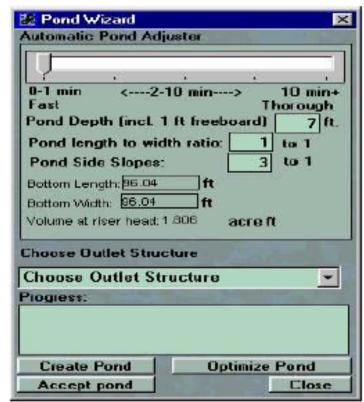
Intended function and proper design

- Installation procedures
- Proper maintenance

Lesson: Inspect facilities during and after construction

Full time staff person hired for inspections

Lesson: Provide regulatory authority to ensure long-term performance


- City ordinance requires owners to maintain swales
- Allows City to maintain facilities and charge owners

IMPs for Hydromodification Management

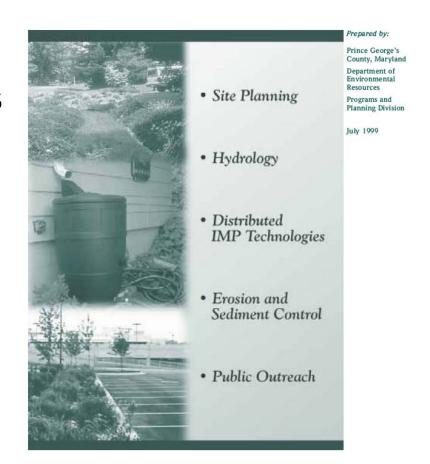
- Existing Stormwater Programs with emphasis on LID for Hydromod control
 - State of Washington
 - City of Portland, Oregon
 - Prince George's County, Maryland

State of Washington

- Continuous hydrology volume/duration control
- Challenge:
 difficult to extend
 modeling tool to
 dozens of
 distributed IMPs

Pond Wizard

City of Portland, Oregon

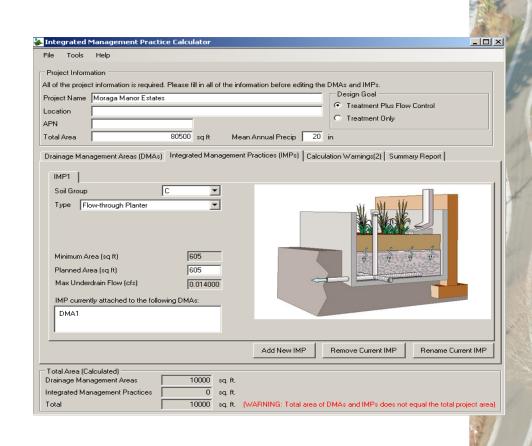

- Easy to use tool encourages LID
- Hydromod control assumed, no continuous analysis to support

The city has produced this form to ass	nplified Approach for Sto sist with a quick and simple approach to sumed to comply with pollution reduction or Section 1.4 must still be met.	o manage stormwate	er on-site.				
New or Redeveloped In	•		Box 1				
(do not include roof areas th	nat will be infiltrated on-site wi	•	•	,			
" CATELICATIONS			Column 2	Column 3			
INSTRUCTIONS 1. Enter square footage of new or	b	Impervious					
redeveloped impervious site area in	Impervious Area	Area Managed					
Box 1 at the top of this form.	Reduction Technique	Facility Surfac	e Area				
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1) Eco-Roof / Roof Garden	sf					
Select impervious area reduction techniques from rows 1-3 to reduce							
techniques from rows 1-3 to reduce the site's resulting stormwater	2) Contained Planter	sf					
management requirement. Tree credit							
can be calculated using the tree credit		sf					
worksheet on the next page.	o) The oreal (oce hear, age)						
	Note: Pervious Pavement areas of	do not pood to bo	included in Re	v 1			
Select desired stormwater	Note. Fervious i aveillem arcas c	10 Hot need to be	IIICluded III Do.	X I			
management facilities from rows 4-10.					_		
In Column 1, enter the square footage		Impervious		Facility			
of impervious area that will flow into each facility type.	Management	Area	Sizing	Surface			
Bacifiacility type.	Facility	Managed	Factor	Area	Uni		
4. Multiply each impervious area from		sf	x 0.06 =		sf		
Column 1 by the corresponding sizing factor in Column 2, and enter the	55 7 15 1	ef	x 0.06 =		sf		
result in Column 3. This is the facility surface area needed to manage runoff from the impervious area.	,						
runon nom me impervious area.	Vegetated Swale	st	x 0.09 =		sf		
5. Total Column 1 (Rows 1-10) and	7) Grassy Swale	sf	x 0.12 =		sf		
enter the resulting "Impervious Area	,, ,						
Managed" in Box 2.	8) Vegetated Filter Strip	sf	x 0.2 =		sf		
6. Subtract Box 2 from Box 1 and	, ,						
enter the result in Box 3. When this	9) Vegetated Infil. Basin	ef	x 0.09 =		sf		
number reaches 0, stormwater	o) vegetated IIIII. Basiii		X 0.00	$\overline{}$	3.		
pollution reduction and flow control	40) C Filter	-6	0.07 -		-6		
requirements have been met. Submit	10) Sand Filter	SI	x 0.07 =	\Box	sf		
this form with the application for permit.							
permit.	For drywell and soakage trench sizing and design requirements,						
7. If Box 3 is greater than 0 square	see Section 2.9.						
feet, add square footage or facilities							
to Column 1 and recalculate, or use					_		
additional facilities from Chapter 2.0	Total Immendance Area						
	Total Impervious Area		Box 2				
of the Stormwater Management							
Manual to manage stormwater from	Managed						
	Managed						
Manual to manage stormwater from	Managed Box 1 - Box 2		Пвох 3				

Prince George's County, Maryland

- Event based
- Cumbersome calculations steps
- No continuous, duration analyses

Low-Impact Development Hydrologic Analysis


Contra Costa Clean Water Program

Challenge:

Rapidly develop technically rigorous method and easy to use tools

Approach:

- Hybrid of WA/OR
- Continuous
 hydrology,
 duration analysis
- User friendly

